Introduction

The theory of motives is an attempt to formulate a "universal Weil cohomology theory" for projective varieties (recall a Weil cohomology theory is a contravariant functor from Sm Pryjn to F-Vect, chur F=0, satisfying the usual Kunneth-formula, cup product, Hard Lefschute, etc.). This is to some extent successful, but many hand foundational guestions remain.

On the other hand a more recent development is the theory of derived categories of sheaves on Projective varieties, In many ways derived categories appear motivic in nature: Functors between them are induced by objects on the product (just like correspondences) and they admit decompositions (semiorthogonal decompositions) which in many cases looks like direct sum decompositions of motives. More recent work has indicated the possible existence of a deep relationship between derived categories and biretional geometry.

Motivated by this, it is reasonable to think of D^b(X) as a "noncommutative algebraic variety". However there are technical reasons why one should avoid the setting of triangulated categories, so for us we will always work w/ some dy-enhancement or or-enhancement (the latter with localizing invariants). So then one should view an arbitrary dg-category as a "noncommutative algebraic variety". The theory of noncommutative motives is then to provide some "universal invariant" of dy-categories.

Let us now sketch the outline of the seminer :

dg-categories and derived categories of varieties.
 Review of pure motives.
 Noncommutative motives
 Additive inversionts

4) Localizing inversionts.

Lets try to provide some instruction for (1). To any quasi-compact and separated scheme X, one can give a triangulated category $D^b(coh X)$ (= $D^b_{coh}(Qcoh X)$) which originally was used to study vector bundles and such and their relation to the geometry of X. This category is typically constructed in three steps. First one passes to the category of chain complexes, $C^b(coh X)$, then to the homolopy category by quotienting out the morphisms honotopic to zero, then finally one applies a localization process on $K^b(coh X)$ to invest quasi-isomorphisms. The resulting category is called the bounded derived category of coherent sheaves $D^b(X)$. As we alluded to earlier, this category appears to exhibit motivic behavior. For example if X and Y are smooth and projective them a fully faithful triangulated functor $\overline{D}: D^b(X) \rightarrow D^b(Y)$ is "represented" by an object on the product, that is,

Φ(-) ≅ RP+ (g*(-) ≤ ε) ("of Fourier-Mukei type")

where & D^b(XXY) and X * XXY - Y. This "pull-multiply-push" bears a striking resemblance to the marphisms (correspondences) in Mote. However not all functors are of this type, and to fix this we pass to dy-categories, and for technical reasons look at the category of perfect objects PerfXC D³(X) consisting of bounded complexes of bally free sheaves.

To any scheme as above we regured Perf X as a "noncommutative algebraic variety". Morphisms between noncommutative varieties are exactly the Fourier-Mukai functors. Then Ko(Perf X) plays the role of the Chow ring, and there are so-called additive invariants which are the analog of Weil cohomology theories.

Moreover these additive invariants turn certain decompositions of Perf X into direct sums, and further the similar question of if there is a "universal invariant" has an affirmative answer, which is one of our goals in this seminur. Finally, there is no apriori reason why we stick to noncommutative varieties of the form Perf X (these come from commutative varieties after all), and so we should actually work with arbitrary dy-categories. Differential Graded Categories Let C(h) be the category of chain complexes of k-vector spaces. <u>Def:</u> A differential graded (dg) category is a category enriched over C(k). A dg-functor is a functor enriched over C(k), i.e. if $\overline{\Phi}: \mathcal{A} \rightarrow \mathcal{B}$ is a dy-functor, then for all objects c, d ∈ A, the morphism $Hom(c,d) \longrightarrow Hom(\Phi(c), \Phi(d))$ is a morphism in C(k). Of course a definition is useless without examples, so let us give a handful of them Examples: 1) Recall a dy k-algebra is a graded algebra $A = \bigoplus_{i \in \mathbb{Z}} A^i$ together with a differential, i.e. a degree +1 morphism d: A -> A whose square is zero and d satisfies the Leibniz rule. Then a simple rephrasing of this is to say that a dy-algebra A is the same as a dy-category it with one object, and Hong (*, *) = A. 2) A left (or right) dy-module over a dy-algebra A is a chain complex M equipped with a chain map $A \otimes M \rightarrow M$ which satisfies $d_M(p(u,v)) = p(d_A a, v) + (-1)^{|a|} p(a, d_M v)$ and p(a, p(b,v) = p(a.b,v). Alternatively given the dy-category so with one object and endomorphism algebra A, a left (right) dy-module over it is a dy-functor A - Cy(k) (xb - Cy(k)). Hence more generally for an arbitrury dy-category A, we can define the category of right dy-modes over A as all dy-functors to cy (k). Gimm an object a of to, there is a canonical dy-module given by Homy (-, a). Any dy-module isomorphic to such a functor is called representable. 3) C(k) - the category of complexes of k-modules is a dy-cat, Cody (k), in a natural way. Given two complexes M', N'; define Homⁿ(M, N) = TI Hom (Mⁱ, Nⁱ⁺ⁿ) and d(f) = d_N of - (-1)ⁿ fod_M Here there is an obvious functor which sends objects to themselves, and sends Hom > H° (Hom). We denote the image of this functor by H° (Coly(k)), and this agrees with the "classical" homotopy category K(k). Similarly we can also define $Z^{\circ}(-)$ applied to a dy-category by a neur identical rule. Thus in our example $Z^{\circ}(C_{dy}(h)) = C(h)$, and so sometimes $Z^{\circ}(D)$ is called the "underlying category" of D.

4) Denote by dycat (k) the category of dg-categories and dg-fuctors. This category has a
monsided structure given by the tensor product of two dy-categories:
$A \otimes B = \begin{cases} Cb(A \otimes B) = Cb(A) \times Ob(B) (small eats!) \\ Hom ((a,,b,), (a_2,b_2)) = Hom_A(a,,a_2) \otimes Hom_B(b,,b_2). \end{cases}$
In purticular this allows us to speak of dy-bimodules. Similar to the above, a dy - 1673 - bimodule is a functor $26 \otimes 73^{\circ P} \longrightarrow C_{dy}(k)$.
Def: A dy-functor F: A → B is called a guasi-equivalence ; f:
the monthing on them (a o') - them (E(a) =(a)) is a questic is querely
 The induced functor H°(F): H°(A) → H°(B) is essentially surjective.
We in particular are interested in dy-categories up to guasi-equivalence. Hence (ignoring set theoretic issues) we denote by Ho(dycat(k)) the (Gabriel-Zieman) localization of
dycat(k) along quasi-equivalences. However this category is badly behaved and difficult to
describe, so we need a better description.
Def: Let M be a category with arbitrary limits and colimits. A closed model structure
on M consists of the datum of three sets of morphisms in M, the fibrations F, the cafilomations C, and the meak equivalences W; satisfying:
1) X to Y to Z in M, W heres a "2 out of 3 rule" (i.e. saturated),
1) X => Y => Z in M, W hus a "2 out of 3 rule" (i.e. saturated), 2) If f, g are morphisms in M such that f is a retract of g, that is, there is a
commutative diagram
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$A' \longrightarrow B' \longrightarrow A'$
where the horizontal compositions are identities. Then if g & F, C, or W, so is f.
(3)
$A \xrightarrow{+} X$
i P
$\frac{B + y}{P}$
be a commutative square with i∈ C, p∈F. Then if either for g are in W, then there is a morphism h:B→X making the triangles commute.
4) Any morphism f:X->Y in M can be factored in two ways as f=poi and f=go; with pEF, iECNW, gEFNW, and jEC.
By definition, the homotopy category of a model category $H_0(M)$ is the localization $M[W^{-1}]$.
The existence of a model structure has rather significant implications for the localized category. Indeed two morphisms $f, g: X \rightarrow Y$ are called homolopic if there exists
a diagreen
·
$ \begin{array}{c} \times \\ & \\ & \\ \\ \\ & \\ \\ \\ & \\ \\ \\ \\ & \\$
$\frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
, X \ &]

Now the axioms of a model category are such that f is homotopic to g in M , then $f = g$ in $H_0(M)$, further, the image of p is an isomorphism, and so are the images of i and j .
Example: On C(k) there is a model structure given by F = { surjective morphisms} C = { injective morphisms} W = { guasi-isomorphisms}.
Then it is known that $H_0(C(k)) \cong D(k)$, the derived carbeying of K-Mod.
If to is a dy-category, one can give a model structure on (right) to-modules ((6), where the mak-equivalences are the guasi-isomorphisms. The resulting hemotopy category is denoted D(tb), the derived category of to (NOT the same as the dy derived category of a dy-category).
Theorem: dycat(k) carries a (cofibrantly generated) model structure. The weak equivalences ane the guasi-equivalences and fibrations are dg-functors F: A → B such that 1) Morphisms Honig (c, d) → Honigs (F(c), F(d)) are surjective, 2) for each isomorphism [g]: F(X) → F(y) in H ^o (B), there is an isomorphism [f]: X→ Y with F(Lf]) = [g].
We call the resulting homotopy codeyory flge. A model category with a zero object is called a pointed model category:
$\begin{array}{cccc} A & \longrightarrow & \bigcirc & & \end{pmatrix} \ by our assumption on meak factorization. Objects whose unique mup to zero is \\ \hline & \bigcirc & \bigcirc & \bigcirc & & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc$
Take again C ⁺ (10), A w/ enough injectives (abelian). The weak equives & cofibrations are the same, but we can ask fibrations to be injective (degreewise) with injective Ker. There is also a dual notion for C ⁻ (16) w/ 16 enough projectives. Then fibrent (cofibrant replacement is similar to injective (projective) resolutions.
Dually! So we can replace every element of our category with something which is fibrent and cofibrant, C. The lesson here is that model categories allow one to work only with "good" objects, instead of with all of Ho(M).
Then: Let \tilde{M} be the subcategory of bifibrant objects in M . Then $\tilde{M}[w^{-1}] \xrightarrow{\sim} M[w^{-1}]$.
Now if M has coproducts and $A \in M$, we have a canonical map $A \perp A \rightarrow A$. $f_{\mathcal{C}_{Y}}(A)$
Thun as above we have a notion of homotopy: CrI(A)

$$\begin{array}{c} \left\{ \begin{array}{c} \left\{ \begin{array}{c} \left\{ \begin{array}{c} \left\{ \begin{array}{c} \left\{ \right\} \right\} \right\} \right\} \\ \left\{ \begin{array}{c} \left\{ \left\{ \right\} \right\} \right\} \\ \left\{ \begin{array}{c} \left\{ \left\{ \right\} \right\} \right\} \\ \left\{ \begin{array}{c} \left\{ \right\} \right\} \\ \left\{ \begin{array}{c} \left\{ \right\} \right\} \\ \left\{ \right\}$$

Recall that the homotopy category of dycat (k) w.r.t. this model structure was denoted Hge (k) (for "Homotopy w.r.t. quasi-equivalences"). As we discussed, there is a notion of cofibrant replacement A cof is the identity on objects (proof apparently requires the small objects argument).

Given two dy-categorics & and B, we define to \$B by theof \$B. When to is already cofibrant (or k-flat, i.e., all dy k-modules Hang (x,y) are k-flat) then there is a quesi-equivalence to \$ 13 -> 10 @ 13. If 13 is a dy-category, a right dy B-module M (Bor - Cog(k)) is called quesi-representable if it is isomorphic in D(73) to \hat{y} = Hom (-, y) for some ye B.

<u>Def:</u> Given two dy-carts & and B, we denote by rep. (26, 73) the full trianyulated subcatagory of D(& & B) consisting of right dy & & B-modules M s.t. V ac A, M(a, -) is quasi-representable

 $\underline{\text{Thm}}(\text{Töem}): \hspace{0.1cm} H_{\text{ye}(k)} (\mathcal{A}, \mathcal{B}) \cong \text{Iso rep}_{\text{ye}}(\mathcal{A}, \mathcal{B}). \hspace{0.1cm} \text{Where} \hspace{0.1cm} \text{"Iso" means isomorphism classes.}$

There will be another model structure on decat(k) which we will prefer, but already this lets us do quite a bit, and they will be "built" from this one.

Pretriangulated dy-categories and enhancements

Pretriangulated dg-categories and enhancements Lets take a moment and recell our original goal. If this is theory is to apply to "commutative" algebraic geometry, we should mention how exactly we take a projective variety X to a dy-category.

So that we do not lose any thing, we should require that H°(D) "recovers" X, in the sense that it should recover D⁶(X) (really, perf X). But this is a triangulated category, and it's certainly not the case that the homotopy category of a dy-category is always triungulated. What we require is some condition on I so that H°(D) is triangulated.

<u>Def:</u> We say a dy category to is pretriangulated if the image of the Youndar functor $Z^{\circ}(\mathcal{A}) \rightarrow C(\mathcal{A})$ sending $a \mapsto Hom_{\lambda}(-, a) = \hat{a}$ is stable under shifts and extensions. That is, for all $a, b \in \mathcal{A}$ and $n \in \mathbb{Z}$ and $any f: B \rightarrow A$, $Cone(\hat{f}) = Cone(f)$ and $\hat{B}[n] = B[n]$.

For us, its enough to know that if it is pretriengulated, then H°(16) has the structure of a triangulated category. Further, given a dy-category so, there is a construction which returns a pretriangulated category, pre-tr(A), called the pretriangulated envelope. To construct this, one proceeds roughly as follows

- 1) form Z(A), the dy -category whose objects are pairs (a,r), a EX, rEZ, and morphism spaces are Hum 2(1) ((a, r), (b, s)) = Hony (a, b) [s-r]. Very roughly, we are endowing to with a "shift" (or suspension) - Sunctor.
- 2) Now define pre-tr (2) to be the dy-category with objects finite seguences (x1,r1),..., (xn,rn) of objects in Z(x), together with matrices M = (mis) of morphisms mis & Hamman ((xi, ri)) (xi, ri)) such that mij=0 for izj (strictly upper triangulan) and d(mij)+ Zz mizmej=0.

Now morphisms in Hompetrico ({(xi,ri), M3, {(yi,si), N3}) are given by matrices f=(fij) w/ fis & Hama(d) ((Xisri), (Yi, Si)). The differential of a homeyeneous morphism is

Intuitively we are adding all cones, cones of morphisms of cones, etc.

Def: Let T be a triangulated category. A dg enhancement is a pair, (J, E), where J is a pretriangulated dg-category and $E: H^{\circ}(J) \rightarrow T$ is a triangulated equivalence. We say two enhancements J and J' are equivalent if there is a dg-functor $p: J \rightarrow J'$ inducing an equivalence $H^{\circ}(J) \xrightarrow{\sim} H^{\circ}(J')$. They are strongly equivalent if ϕ can be chosen so that $E' \circ H^{\circ}(\phi) \cong E$.

While the definition is fine, we have yet to construct an example. One may hope that the quotient construction of Verdier lifts to the dy-world, and in fact it does. It is known as the Drinteld quotient on dy-quotient.

Let $\mathcal{A} \subseteq \mathcal{B}$ be a full dy-subcat of a dy-cat. First we take a "homotopically k-flat" resolution $\widetilde{\mathcal{B}} \to \mathcal{B}$. This is a quasi-equivalence $\widetilde{\mathcal{B}} \to \mathcal{B}$, and $\widetilde{\mathcal{B}}$ is a dy-category whose morphism complexes are homotopically k-flat, i.e. for all acyclic dy k-modules \mathcal{M} , the complex Hom $\widetilde{\mathcal{A}}(x,y) \otimes_k \mathcal{M}$ (recall that \mathcal{M} is just a chain complex). In our case we can use cofibrant replacement $\mathcal{B}_{cof} \to \mathcal{B}$.

Now form a new category by adding, for each $a \in \tilde{A} \leq \tilde{B}$ a morphism $C_a: a \rightarrow a$ in degree -1 and declare $d(C_a) = id_a$. This contracts every object in \tilde{A} , and we call the resulting category 13/4. In Hge(k), we even get a "localization functor" $13 \xrightarrow{Q} 13/4$.

Now on any quesi-compact and separated scheme X, we define a dg-enhancement of D(QcohX)by the dg-gudient D(QcohX) = Cdg(QcohX)/Acdg(QcohX). It's not hand to see that $H^{\circ}(D(QcohX))$ is equivalent to D(QcohX). Recall that an object C in a triangulated category T is called compact if $Hom_{\gamma}(C, -)$ commutes with arbitrary direct sums. It has been shown that the triangulated subcategory of perfect objects in D(QcohX) is PerfX, and so all of this gives a dgenhancement of Perf X, denoted Perfdy X.

PerfyX is really the "right" category to work with for many reasons. For one, it is one of the cases where we actually have a uniqueness resulf.

Theorem (Lunts-Orlov): If X is guasi-projective over a field, then Perf X and D^b(coh X) have unique enhancements. If is projective, they are strongly unique

This has been extended this to D(G), where G is any Grothindicele category, and in some situations also to the compact objects D(G)^C. See Commaco - Steller;

Note that apriori, there is little reason to think a triangulated category has an enhancement, or even if it's unique. For example Spectra has no dy-enhancement, and there are rings (quasi-Frohenius) s.t. Mod (R) has non-unique enhancements.

Already this should be enough to convince you that Hge(k) might not be the best category since we have non-unique enhancement in some geometric & algebraic context. So what we should do is learn how to get a category in which they are unique (when they exist). What we could do is work with a notion of "pretriangulated" equivalence, but we actually (for reasons (after on) want something stronger.

Morita equivalence
Let A and B be two dy-categories and X a right A-B bimodule (dy A B B-module). This
is a functor X: 2500 B -> Coly(k), and hence is the datum of complexes X(B,A), A EB, BEB,
and for each dy B-module (right) M, we have a functor:
$G: C(B) \rightarrow C(B), M \mapsto (H_{on}(X,M): A \mapsto H_{on}(X(-,A),M))$ $C_{4}(B)$
and this has a left adjoint F(L) = L@X. Now using the model structures on the
and this has a left adjoint $F(L) = L \otimes X$. Now using the model structures on the contegories of modules, we can define
$LF(L) = F(L_{cof})$ and $RG(M) = G(M_{fib})$
Now if $\overline{\Phi}: A \rightarrow 13$ is a dy-functor, then we can get an A @13 ^{ch} -module by
Now if $\overline{\Phi}: A \rightarrow 13$ is a dy-functor, then we can get an $A \otimes B^{op}$ -module by setting $X(B, A) = Hom_{Calg(13)}(B, \overline{\Phi}(A))$ is a dy-bimodule. We then get a functor $LF_{\overline{T}}: D(A) \rightarrow D(B)$.
$LF_{\underline{\sigma}}: D(k) \rightarrow D(13).$
$Def: A dy-function \overline{P}: A \rightarrow B$ is said to be a Morita equivalence if $LF_{\overline{P}}: D(A) \rightarrow D(B)$ is
an equivalence
Note every gunsi-equivalence is a morita equivalence, and so is the morphism $A \rightarrow \text{pre-tr}(A)$.
T (T) (
<u>Then (Tabuada)</u> : decat(k) admits a cofibruitly generated model structure where weak equivalences
ave Morita equivalences and cofibrations are the same as in Hge (k). The fibrant objects are the dy-categorics whose Voneda embedding $H^{\circ}(\mathcal{A}) o D(\mathcal{A})^{\circ}$ is an equivalence
We write Huno(k) for the resulting localization. Note that Huno(k) can be obtained
from Hge (k) by left Bousfield localization, and is a pointed category with zero object
* 91 (one object & one morphism).